
Peer-to-Peer Assisted Livestreaming
Allison Turner, Guanzhou Hu, and Vishrant Tripathi

I. INTRODUCTION

Livestreaming applications like Twitch, Periscope and
Facebook-Live are a crucial driver of internet traffic growth.
For example, Periscope more than tripled the number of daily
streams in a 3 month period in 2015 [1].

A typical livestreaming application generally has thousands
of simultaneous broadcasters who generate video content
and have low upload bandwidths; and millions of audience
members who want that content as soon as possible in order
to interact with it via comments and likes. Contrary to regular
video traffic, livestreaming viewers demand an almost real-
time, lifelike experience while broadcasters demand the ability
to stream at an unprecedented scale.

The twin goals of low latency and high scalability are
the key requirements of a livestreaming architecture. In the
following sections, we describe how some of the most popular
livestreaming services are able to achieve these goals, and
explore whether there is scope for improvement via better
design.

II. CURRENT ARCHITECTURE

We find that the general architecture described in [1] and
[5] is indicative of how most current livestreaming systems
are designed.

In Periscope, a broadcaster initiates a stream, transmitting
their newly generated and encoded video to one CDN through
the persistent connection-based Real-Time Messaging Protocol
(RTMP). The first hundred or two hundred viewers connect to
that same content distribution network and retrieve the video
through RTMP. The video is propagated through this first CDN
as well as a second one. Subsequent viewers connect to the
second CDN and retrieve the video through the chunking-
based HTTP Live Streaming protocol (HLS). All viewers
connect to a third content distribution network in order to
generate comments and other interactions, however, only that
first group of a few hundred viewers can send comments.

The design is simple and it splits the job of latency and
scalability between the two CDNs. The first CDN provides
low latency to a few viewers while the second CDN provides
reliable streaming to a large group of viewers.

III. P2P ASSISTED LIVESTREAMING

CDNs are great at providing scalability and overcoming
bandwidth limitations of the broadcasters. However, they are
not the most efficient in terms of latency. This is especially true
when viewers are closer to the the broadcaster as compared to
the CDN. Frames are traveling from the broadcaster, past the
viewers to the CDN, then back down to the viewers again.

We propose a system that uses a combination of peer-to-
peer connections, multicasting, and CDNs to more efficiently

Fig. 1. Prototype Topology

stream live video. Audience members that are part of the
broadcaster’s local area network connect directly via a P2P
connection. Audience members that are further away receive
content from a CDN, similar to the usual setup.

Peer-to-peer systems for video traffic have been a popular
area of study and there is a large body of work focusing on
different aspects of the problem [2]–[4], [6]. However, most of
these works consider a purely distributed P2P architecture. Our
work involves augmenting a CDN based livestreaming system
with switch-enabled P2P to enhance its delay performance
while maintaining scalability.

IV. PROOF OF CONCEPT SYSTEM

We built a proof of concept system to show the viabil-
ity of our proposed improvements1. We emulated a simple
broadcaster-viewer-CDN topology in Mininet. We created
logic to enable peer-to-peer connections with OpenFlow on
a simulated POX controller. For testing, we created a simple
video application using FFmpeg and MPlayer. We then exam-
ined our altered network traffic with Wireshark.

Our prototype topology consists of three hosts, a switch, and
a controller (see Figure 1). In the regular setup, the broadcaster
creates a connection to the CDN to upload content, and the
audience member creates another connection to the CDN to
request the content. When our improvements are enabled on
the switch controller, the router can detect that the broadcaster
and the viewer are in its local network by looking at RTMP
metadata packets. This enables us to establish a direct peer-
to-peer relationship between the broadcaster and viewer.

V. EXPERIMENTS

We ran ping trains between hosts to test latency. We tested
in both high bandwidth and bandwidth limited situations. We
assumed the minimum round trip time for the broadcaster and
viewer links to their switch should be lower than the RTT

1Our code can be found at this repo. A summary of our switch controller
design can be found in these slides.

https://www.ffmpeg.org/
http://www.mplayerhq.hu/design7/news.html
https://www.wireshark.org/
http://www.github.com/Allison-Turner/p2p-livestreaming
https://docs.google.com/presentation/d/1DvFXPU94F932dR3AAu87u9xZMteHArnPzpD0hii22aU/edit?usp=sharing


Fig. 2. Delay on a high bandwidth system. CDN link is 4mbps, 30ms and
LAN links are 4mbps, 8ms.

Fig. 3. Delay on a bandwidth limited system. CDN link is 100mbps, 30ms
and LAN links are 10mbps, 8ms.

between the switch and the CDN, since ideally our peering
system would leverage broadcasters and viewers sharing local
area networks.

We found that latency on the stream was significantly
reduced when the system switched into peer-to-peer enabled
mode, as expected. There were some queueing delays, espe-
cially in the bandwidth limited case, but this is to be expected
from a video application. See Figures 2 and 3 for the results
of these experiments.

VI. LIMITATIONS

Our proof of concept system has several limitations. The
protoype topology was very simple, only including a few
hosts and one switch. We wanted to add another group of
viewers far away from the CDN and enable multicasting,
but troubleshooting the P2P enabled controller on groups of
viewers that required different rules proved difficult.

Our livestreaming application was simplified, missing many
of the control features of a fully developed application. We
also did not include comments or reactions as the likes of

Periscope and Twitch do. We chose not to implement these,
and instead focus on the video aspects of the system, because
we determined that such engagements were not a bottleneck
for the streaming application.

VII. FUTURE WORK

On future iterations of this system, we would want to
include IP multicasting and more P2P communication between
viewing peers, since part of our goal is to eliminate extraneous
client-server connections. We also want to explore edge and
d2d caching on peers discussed in [6] to further reduce the
amount of communication needed between the application
CDNs and the users.

Exploring whether switch enabled P2P is a realistic design
choice is also an interesting question. Future development
could include reworking our method of implementing peering.
Our router-assisted scheme might not be feasible for a real
application, since getting local ISPs to change their switches
for an application is unlikely. The peering mechanism would
need to operate on an end-to-end, client-server basis. This is
doable, but comes with some security concerns. One would
want to be sure that any audience members or link interceptors
would not be able to access any information about other
audience members.

ACKNOWLEDGEMENTS

All of us were involved in discussions, surveying literature,
and debugging problems to complete the project. A detailed
distribution of work follows:

• Allison researched tools and libraries for our proof of
concept and was responsible for much of the writing.

• Guanzhou proposed the novel design of the controller and
switch-enabled p2p, and did the main part of coding.

• Vishrant got video streaming to work on the Mininet
topology and was responsible for experiments and results.

REFERENCES

[1] B. Wang, X. Zhang, G. Wang, H. Zheng, and B. Zhao, “Anatomy of
a Personalized Livestreaming System,” in Proc. IMC 2016, November
14-16, 2016, Santa Monica, CA, USA.

[2] D. Purandare and R. Guha, “An Alliance based Peering Scheme for
Peer-to-Peer Live Media Streaming,” in Proc. P2P-TV, August 31, 2007,
Kyoto, Japan.

[3] E. Miller, “Akamai’s Peer-To-Peer Love Story,” https://blog.peer5.com/
akamais-peer-to-peer-love-story/.

[4] K. Pires, G. Simon. “DASH in Twitch: Adaptive Bitrate Streaming in
Live Game Streaming Platforms,” VideoNext 2014 : 1st Workshop on
Design, Quality and Deployment of Adaptive Video Streaming, Dec
2014, Sydney, Australia.

[5] “Twitch Engineering: An Introduction and Overview,”
Dec 2015, Online, https://blog.twitch.tv/en/2015/12/18/
twitch-engineering-an-introduction-and-overview-a23917b71a25/.

[6] T. Zhang, X. Fang, Y. Liu, G.Y. Li, and W. Xu (2019). “D2D-Enabled
Mobile User Edge Caching: A Multi-Winner Auction Approach.” IEEE
Transactions on Vehicular Technology.

[7] “Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White
Paper,” Online, https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-741490.
html.

https://blog.peer5.com/akamais-peer-to-peer-love-story/
https://blog.peer5.com/akamais-peer-to-peer-love-story/
https://blog.twitch.tv/en/2015/12/18/twitch-engineering-an-introduction-and-overview-a23917b71a25/
https://blog.twitch.tv/en/2015/12/18/twitch-engineering-an-introduction-and-overview-a23917b71a25/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

	Introduction
	Current Architecture
	P2P Assisted Livestreaming
	Proof of Concept System
	Experiments
	Limitations
	Future Work
	References

